Selection of a Modules Stock Composition Using Genetic Algorithm
نویسندگان
چکیده
The paper focuses on modelling and solving a design problem. The problem consists in selecting a set of modules that will be manufactured in distant sites and shipped in a nearby location site for a final assembly operation under time limits. The problem is modelled as a mathematical problem and solved by a genetic algorithm with a modified crossover operation, a uniform mutation with adaptive rate and a partial reshuffling procedure. Copyright © 2006 IFAC
منابع مشابه
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملA Comparative Study of the Prediction Stock Crash Risk by using Meta- Heuristic & Regression
One of the most important methods of opacity accounting information by management is to accelerate the identification of good news versus delaying the identification of bad news on profits, but there is always a final level of accumulation of bad news in the company, and by reaching that its final level, these bad news will be released, which will lead to a Stock Price Crash Risk. In fact, stoc...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کامل